Monday, September 14, 2009

MAGNETISM

                                                             MAGNETISM
In order to properly understand the principles of electricity, it is necessary to study magnetism and the effects of magnetism on electrical equipment. Magnetism and electricity are so closely related that the study of either subject would be incomplete without at least a basic knowledge of the other.
Much of today's modern electrical and electronic equipment could not function without magnetism. Modern computers, tape recorders, and video reproduction equipment use magnetized tape. High-fidelity speakers use magnets to convert amplifier outputs into audible sound. Electrical motors use magnets to convert electrical energy into mechanical motion; generators use magnets to convert mechanical motion into electrical energy.

MAGNETIC MATERIALS :

Magnetism is generally defined as that property of a material which enables it to attract pieces of iron. A material possessing this property is known as a MAGNET. The word originated with the ancient Greeks, who found stones possessing this characteristic. Materials that are attracted by a magnet, such as iron, steel, nickel, and cobalt, have the ability to become magnetized. These are called magnetic materials. Materials, such as paper, wood, glass, or tin, which are not attracted by magnets, are considered nonmagnetic. Nonmagnetic materials are not able to become magnetized.

Ferromagnetic Materials :

The most important group of materials connected with electricity and electronics are the ferromagnetic materials. Ferromagnetic materials are those which are relatively easy to magnetize, such as iron, steel, cobalt, and the alloys Alnico and Permalloy. (An alloy is made from combining two or more elements, one of which must be a metal). These new alloys can be very strongly magnetized, and are capable of obtaining a magnetic strength great enough to lift 500 times their own weight.

Natural Magnets
Magnetic stones such as those found by the ancient Greeks are considered to be NATURAL MAGNETS. These stones had the ability to attract small pieces of iron in a manner similar to the magnets which are common today. However, the magnetic properties attributed to the stones were products of nature and not the result of the efforts of man. The Greeks called these substances magnetite.
The Chinese are said to have been aware of some of the effects of magnetism as early as 2600 B.C. They observed that stones similar to magnetite, when freely suspended, had a tendency to assume a nearly north and south direction. Because of the directional quality of these stones, they were later referred to as lodestones or leading stones.Natural magnets, which presently can be found in the United States, Norway, and Sweden, no longer have any practical use, for it is now possible to easily produce more powerful magnets.

Artificial Magnets
Magnets produced from magnetic materials are called ARTIFICIAL MAGNETS. They can be made in a variety of shapes and sizes and are used extensively in electrical apparatus. Artificial magnets are generally made from special iron or steel alloys which are usually magnetized electrically. The material to be magnetized is inserted into a coil of insulated wire and a heavy flow of electrons is passed through the wire. Magnets can also be produced by stroking a magnetic material with magnetite or with another artificial magnet. The forces causing magnetization are represented by magnetic lines of force, very similar in nature to electrostatic lines of force.
Artificial magnets are usually classified as PERMANENT or TEMPORARY, depending on their ability to retain their magnetic properties after the magnetizing force has been removed. Magnets made from substances, such as hardened steel and certain alloys which retain a great deal of their magnetism, are called PERMANENT MAGNETS. These materials are relatively difficult to magnetize because of the opposition offered to the magnetic lines of force as the lines of force try to distribute themselves throughout the material. The opposition that a material offers to the magnetic lines of force is called RELUCTANCE. All permanent magnets are produced from materials having a high reluctance.
A material with a low reluctance, such as soft iron or annealed silicon steel, is relatively easy to magnetize but will retain only a small part of its magnetism once the magnetizing force is removed. Materials of this type that easily lose most of their magnetic strength are called TEMPORARY MAGNETS. The amount of magnetism which remains in a temporary magnet is referred to as its RESIDUAL MAGNETISM. The ability of a material to retain an amount of residual magnetism is called the RETENTIVITY of the material.
The difference between a permanent and a temporary magnet has been indicated in terms of RELUCTANCE, a permanent magnet having a high reluctance and a temporary magnet having a low reluctance. Magnets are also described in terms of the PERMEABILITY of their materials, or the ease with which magnetic lines of force distribute themselves throughout the material. A permanent magnet, which is produced from a material with a high reluctance, has a low permeability. A temporary magnet, produced from a material with a low reluctance, would have a high permeability.

MAGNETIC POLES
The magnetic force surrounding a magnet is not uniform. There exists a great concentration of force at each end of the magnet and a very weak force at the center. Proof of this fact can be obtained by dipping a magnet into iron filings (fig. 1). It is found that many filings will cling to the ends of the magnet while very few adhere to the center. The two ends, which are the regions of concentrated lines of force, are called the POLES of the magnet. Magnets have two magnetic poles and both poles have equal magnetic strength.
 
Law of Magnetic Poles :
If a bar magnet is suspended freely on a string, as shown in figure below, it will align itself in a north and south direction. When this experiment is repeated, it is found that the same pole of the magnet will always swing toward the north magnetic pole of the earth. Therefore, it is called the north-seeking pole or simply the NORTH POLE. The other pole of the magnet is the south-seeking pole or the SOUTH POLE.
 
A practical use of the directional characteristic of the magnet is the compass, a device in which a freely rotating magnetized needle indicator points toward the North Pole. The realization that the poles of a suspended magnet always move to a definite position gives an indication that the opposite poles of a magnet have opposite magnetic polarity.The law previously stated regarding the attraction and repulsion of charged bodies may also be applied to magnetism if the pole is considered as a charge. The north pole of a magnet will always be attracted to the south pole of another magnet and will show a repulsion to a north pole. The law for magnetic poles is: Like poles repel, unlike poles attract.
The Earth's Magnetic Poles
The fact that a compass needle always aligns itself in a particular direction, regardless of its location on earth, indicates that the earth is a huge natural magnet. The distribution of the magnetic force about the earth is the same as that which might be produced by a giant bar magnet running through the center of the earth (figbelow. The magnetic axis of the earth is located about 15° from its geographical axis thereby locating the magnetic poles some distance from the geographical poles. The ability of the north pole of the compass needle to point toward the north geographical pole is due to the presence of the magnetic pole nearby. This magnetic pole is named the magnetic North Pole. However, in actuality, it must have the polarity of a south magnetic pole since it attracts the north pole of a compass needle. The reason for this conflict in terminology can be traced to the early users of the compass. Knowing little about magnetic effects, they called the end of the compass needle that pointed towards the north geographical pole, the north pole of a compass. With our present knowledge of magnetism, we know the north pole of a compass needle (a small bar magnet) can be attracted only by an unlike magnetic pole, that is, a pole of south magnetic polarity.

No comments: