Saturday, September 12, 2009

ELECTROSTATICS

                                                  ELECTROSTATICS

Electrostatics (electricity at rest) is a subject with which most persons entering the field of electricity and electronics are somewhat familiar. For example, the way a person's hair stands on end after a vigorous rubbing is an effect of electrostatics. While pursuing the study of electrostatics, you will gain a better understanding of this common occurrence. Of even greater significance, the study of electrostatics will provide you with the opportunity to gain important background knowledge and to develop concepts which are essential to the understanding of electricity and electronics.Interest in the subject of static electricity can be traced back to the Greeks. Thales of Miletus, a Greek philosopher and mathematician, discovered that when an amber rod is rubbed with fur, the rod has the amazing characteristic of attracting some very light objects such as bits of paper and shavings of wood.
About 1600, William Gilbert, an English scientist, made a study of other substances which had been found to possess qualities of attraction similar to amber. Among these were glass, when rubbed with silk, and ebonite, when rubbed with fur. Gilbert classified all the substances which possessed properties similar to those of amber as electrics, a word of Greek origin meaning amber.
Because of Gilbert's work with electrics, a substance such as amber or glass when given a vigorous rubbing was recognized as being ELECTRIFIED, or CHARGED with electricity.

In the year 1733, Charles Dufay, a French scientist, made an important discovery about electrification. He found that when a glass was rubbed with fur, both the glass rod and the fur became electrified. This realization came when he systematically placed the glass rod and the fur near other electrified substances and found that certain substances which were attracted to the glass rod were repelled by the fur, and vice versa. From experiments such as this, he concluded that there must be two exactly opposite kinds of electricity.
Benjamin Franklin, American statesman, inventor, and philosopher, is credited with first using the terms POSITIVE and NEGATIVE to describe the two opposite kinds of electricity. The charge produced on a glass rod when it is rubbed with silk, Franklin labeled positive. He attached the term negative to the charge produced on the silk. Those bodies which were not electrified or charged, he called NEUTRAL.

STATIC ELECTRICITY

In a natural, or neutral state, each atom in a body of matter will have the proper number of electrons in orbit around it. Consequently, the whole body of matter composed of the neutral atoms will also be electrically neutral. In this state, it is said to have a "zero charge." Electrons will neither leave nor enter the neutrally charged body should it come in contact with other neutral bodies. If, however, any number of electrons are removed from the atoms of a body of matter, there will remain more protons than electrons and the whole body of matter will become ELECTRICALLY POSITIVE. Should the positively charged body come in contact with another body having a normal charge, or having a NEGATIVE (too many electrons) charge, an electric current will flow between them. Electrons will leave the more negative body and enter the positive body. This electron flow will continue until both bodies have equal charges. When two bodies of matter have unequal charges and are near one another, an electric force is exerted between them because of their unequal charges. However, since they are not in contact, their charges cannot equalize. The existence of such an electric force, where current cannot flow, is referred to as static electricity. ("Static" in this instance means "not moving.") It is also referred to as an electrostatic force.
One of the easiest ways to create a static charge is by friction. When two pieces of matter are rubbed together, electrons can be "wiped off" one material onto the other. If the materials used are good conductors, it is quite difficult to obtain a detectable charge on either, since equalizing currents can flow easily between the conducting materials. These currents equalize the charges almost as fast as they are created. A static charge is more easily created between nonconducting materials. When a hard rubber rod is rubbed with fur, the rod will accumulate electrons given up by the fur, as shown in figure. Since both materials are poor conductors,very little equalizing current can flow, and an electrostatic charge builds up. When the charge becomes great enough, current will flow regardless of the poor conductivity of the materials. These currents will cause visible sparks and produce a crackling sound.

No comments: